Graph Ranking on Maximal Frequent Sequences for Single Extractive Text Summarization

نویسندگان

  • Yulia Ledeneva
  • René Arnulfo García-Hernández
  • Alexander F. Gelbukh
چکیده

We suggest a new method for the task of extractive text summarization using graph-based ranking algorithms. The main idea of this paper is to rank Maximal Frequent Sequences (MFS) in order to identify the most important information in a text. MFS are considered as nodes of a graph in term selection step, and then are ranked in term weighting step using a graphbased algorithm. We show that the proposed method produces results superior to the-state-of-the-art methods; in addition, the best sentences were found with this method. We prove that MFS are better than other terms. Moreover, we show that the longer is MFS, the better are the results. If the stop-words are excluded, we lose the sense of MFS, and the results are worse. Other important aspect of this method is that it does not require deep linguistic knowledge, nor domain or language specific annotated corpora, which makes it highly portable to other domains, genres, and languages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terms Derived from Frequent Sequences for Extractive Text Summarization

Automatic text summarization helps the user to quickly understand large volumes of information. We present a languageand domain-independent statistical-based method for single-document extractive summarization, i.e., to produce a text summary by extracting some sentences from the given text. We show experimentally that words that are parts of bigrams that repeat more than once in the text are g...

متن کامل

Text Summarization Using Cuckoo Search Optimization Algorithm

Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...

متن کامل

Using Machine Learning Methods and Linguistic Features in Single-Document Extractive Summarization

Extractive summarization of text documents usually consists of ranking the document sentences and extracting the top-ranked sentences subject to the summary length constraints. In this paper, we explore the contribution of various supervised learning algorithms to the sentence ranking task. For this purpose, we introduce a novel sentence ranking methodology based on the similarity score between...

متن کامل

Biogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization

    Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...

متن کامل

A Pilot Study of Opinion Summarization in Conversations

This paper presents a pilot study of opinion summarization on conversations. We create a corpus containing extractive and abstractive summaries of speaker’s opinion towards a given topic using 88 telephone conversations. We adopt two methods to perform extractive summarization. The first one is a sentence-ranking method that linearly combines scores measured from different aspects including top...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014